Decidability of Conjugacy of Tree-Shifts of Finite Type
نویسندگان
چکیده
A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper, we study the shifts of finite type defined by infinite trees. Indeed, infinite trees have a natural structure of one-sided shifts, between the shifts of dimension one and two. We prove a decomposition theorem for these shifts, i.e. we show that a conjugacy between two shifts of finite type can be broken down into a finite sequence of elementary transformations called in-splittings and in-amalgamations. We prove that the conjugacy problem is decidable for tree shifts of finite type. This result makes the class of tree shifts closer to the class of one-sided shifts of dimension one than to the class of two-sided ones. Our proof uses the notion of bottom-up tree automata.
منابع مشابه
Tree-shifts of finite type
A one-sided (resp. two-sided) shift of finite type of dimension one can be described as the set of infinite (resp. bi-infinite) sequences of consecutive edges in a finite-state automaton. While the conjugacy of shifts of finite type is decidable for one-sided shifts of finite type of dimension one, the result is unknown in the two-sided case. In this paper, we study the shifts of finite type de...
متن کاملOn the type of conjugacy classes and the set of indices of maximal subgroups
Let $G$ be a finite group. By $MT(G)=(m_1,cdots,m_k)$ we denote the type of conjugacy classes of maximal subgroups of $G$, which implies that $G$ has exactly $k$ conjugacy classes of maximal subgroups and $m_1,ldots,m_k$ are the numbers of conjugates of maximal subgroups of $G$, where $m_1leqcdotsleq m_k$. In this paper, we give some new characterizations of finite groups by ...
متن کاملBorel Isomorphism of SPR Markov Shifts
We show that strongly positively recurrent Markov shifts (including shifts of finite type) are classified up to Borel conjugacy by their entropy, period and their numbers of periodic points.
متن کاملCellular automata between sofic tree shifts
We study the sofic tree shifts of A ∗ , where Σ∗ is a regular rooted tree of finite rank. In particular, we give their characterization in terms of unrestricted Rabin automata. We show that if X ⊂ A ∗ is a sofic tree shift, then the configurations in X whose orbit under the shift action is finite are dense in X , and, as a consequence of this, we deduce that every injective cellular automata τ ...
متن کامل